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Abstract—In the divisible load distribution, the classic methods on linear arrays divide the computation and communication processes

into multiple time intervals in a pipelined fashion. Li [21] has proposed a set of improved algorithms for linear arrays that can be

generalized to k-dimensional meshes. In this paper, we first propose the algorithm M (multi-installment) that employs the multi-

installment technique to improve the best algorithm Q proposed by Li. Second, we propose the algorithm S (start-up cost), which

includes the computation and communication start-up costs in the design. Although the asymptotic speed-ups of our algorithms M and

S derived from the closed-form solutions are the same as algorithm Q, our algorithms approach the optimal speed-ups considerably

faster than algorithm Q as the number of processors increases. Finally, we combine algorithms M and S and propose the algorithm

MS. Although algorithm MS has the same the asymptotic performance as algorithms Q and S, it achieves a better speed-up when the

load to be processed is very large and the number of processors is fixed or when the load to be processed is fixed and the number of

processors is small.

Index Terms—Divisible load theory, linear array, k-dimensional mesh, multi-installment.

Ç

1 INTRODUCTION

AN efficient load scheduling on the resources of a
parallel and distributed system or a multiprocessor

system is highly desirable for data-intensive applications.
Like other mathematical models, such as queuing theory
and electric resistive circuit theory, divisible load theory
(DLT) [5], [4], [25] provides a powerful tool for modeling
data-intensive applications. A divisible load is a load that
can be arbitrarily partitioned in a linear fashion and can be
distributed to more than one processor to achieve a faster
execution time. Each partitioned portion of the load (called
a chunk) can be independently processed on any processor
on the network.

DLT started with the architecture of a linear array of

processors [11] in 1988. Since then, DLT has been widely

studied in the literature. DLT gained much attention

because of a landmark book written in 1996 [4] and two

introductory surveys [5], [25]. The interconnection topolo-

gies, such as bus [7], [14], [18], [26], [28], linear array [6], [7],

tree [2], [3], [10], [22], hypercube [7], [23], and mesh [7], [8],

[13], [17], [21], have been investigated. Applications of

divisible computations include linear algebra [9], [16],

image processing [24], multimedia applications [1], data-

base searching [7], [12], and Internet packet scheduling [18].

We focus on the mesh networks in this paper. In [13] and
[8], circuit-switching-based algorithms for 2D and 3D meshes
with start-up costs were studied. In [17], another circuit-
switching-based algorithm was also proposed for 3D meshes
with start-up costs and a multisweep distribution policy.
However, the circuit-switching in which communication
times are independent of the distances among processors is
different from the store-and-forward routing used by us and
most researchers in this field. In store-and-forward routing,
the communication time of a transmission is linearly
proportional to both load size and the distance covered. In
[20], Li proposed a divisible load algorithm based on store-
and-forward routing for k-dimensional meshes. In [21], Li also
proposed improved algorithms by employing pipelined
communication. Both [20] and [21] do not consider the start-
up costs.

One technique that can minimize the parallel computa-
tion time is the multiround policy, or multi-installment
policy. In one-round algorithms, each processor receives
one load share for computation. However, in multiround
algorithms, at least one processor receives two or more load
shares, and the load distribution exhibits some kind of
repetition or periodicity [2]. Using multiple rounds im-
proves the overlap of computation with communication
and, thus, overall performance. If the start-up cost is not
considered, an infinite number of rounds would lead to an
optimal schedule. Many multiround divisible load algo-
rithms for chains, star, and trees can be found in [2], [3],
[12], [15], and [28].

In this paper, we develop a technique also called multi-
installment to minimize the parallel processing time.
However, the proposed multi-installment technique is
different from the existing multiround or multi-installment
methods. Our multi-installment algorithms are new designs
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improved over the divisible load algorithm proposed in
[21], which is a multiround algorithm. Our multi-install-
ment algorithms divide the load distribution process into
two different intervals: regular intervals and installment
intervals. The regular intervals are executed first and
followed by the installment intervals. Also, the message
routing method is assumed to be store-and-forward
routing. The contributions of this paper are summarized
as follows:

. The computation and communication start-up costs
are included in the analysis, which were not
considered in [21] and [6].

. We derive the closed-form solutions for the parallel
execution time and speed-up of a linear array and a
k-dimensional mesh.

. We show that the proposed algorithms perform
better than those in [21].

The rest of this paper is organized as follows: In Section 2,
we present the network model of divisible load algorithms.
In Section 3, we review the classic method proposed in [21]
and derive its closed-form solutions of the parallel execu-
tion time and speed-up by including the start-up costs. In
Section 4, we extend the classic algorithms with a multi-
installment processing technique and propose a set of
improved algorithms. In Section 5, we extend the proposed
algorithms for linear arrays to k-dimensional meshes. In
Section 6, we compare the performance of the classic
method with proposed algorithms. We conclude the paper
in Section 7.

2 THE MODEL

We consider a homogeneous mesh network for analysis. A
k-dimensional mesh Meshk consists of N ¼ N1 � . . .�Nk

processors, where k is a positive integer that is greater than
or equal to one. In Meshk, an interior processor Pi for i ¼
i1 � . . .� ik is connected to 2k neighbors Pj, where

j ¼ i1 � 1� i2 � . . .� ik; i1 � i2 � 1� . . .� ik; . . . ; i1

� i2 � . . .� ik � 1:

In this paper, we assume that the corner processor PN is the
initial processor that transmits load fractions to other
processors for processing. It is known that we can improve
the overall speed-up by using an interior processor as the
initial processor [21]. Since using an interior processor is a
straightforward extension, the details are omitted in this
paper. All the links have the same communication speed
and bandwidth. All the processors have the same proces-
sing capability. Each interior processor Pi has 2k separate
ports to communicate with all its neighbors. In other
words, processor Pi can send/receive messages to/from all
its neighbors simultaneously. A processor sends a load
fraction to a neighbor and then it can proceed with other
computation and communication activities without waiting
for the completion of the load transmission process.
However, a processor can only start to perform the
computation after the entire load fraction assigned to it is
received from its predecessor. To enhance the system
performance, our load distribution algorithms allow

simultaneous transmission of all processors, rather than
sequential load distribution. We list the notations and
terminology used in this paper in Table 1.

3 THE EXISTING METHOD ON LINEAR ARRAYS

The classic divisible load distribution methods running on a
linear array of N processors divide the computation and
communication processes into N time intervals or stages in a
pipelined fashion. We assume that the leftmost processor
PN is the initial processor that commences the computation
and communication. In the first interval, PN computes a
load fraction and transmits another load fraction to
processor PN�1 simultaneously. In the second interval, both
processors PN and PN�1 compute a load fraction and
transmit another load fraction to their successors (that is,
PN�1 and PN�2) simultaneously. The same computation and
communication processes repeat until P1 receives a load
fraction in the ðN� 1Þth interval and processes the received
load fraction in the last interval. Notice that P1 only receives
a load fraction once. A better load distribution method
determines the sizes of the load fractions computed and
transmitted by a processor in such a way that the
accumulated length of all time intervals is minimized. We
assume that the processor does not start its computation
and communication processes until it receives the entire
load fraction assigned to it. One design principle for a good
load distribution method is as follows:

Load balance rule between computation and communication.
All processors finish their computation and communication
processes at the end of each interval simultaneously. The
best load distribution method is that no computation and
communication resource is idle in any interval.
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Theoretically, an infinite number of processors could
lead to optimal performance for the divisible load distribu-
tion when the computation and communication start-up
costs (�cp and �cm) are ignored. However, we cannot ignore
the start-up costs in real-world cases. The performance may
degrade as the number of processors exceeds a certain
value. In this section, we analyze the algorithm Q proposed
in [21] by including the computation and communication
start-up costs that are originally neglected. As a result, the
analysis results are the same as the ones in [21] when the
start-up costs are set to zero.

Algorithm Q on a linear array of N processors divides
the parallel execution process into N time intervals. In each
interval, some of the processors can compute and commu-
nicate a load fraction simultaneously. Allocating load to a
processor is based on the load balance rule described above.
Thus, in an interval, if the load allocated to a processor for
computation is w, then the load allocated to the same
processor for transmission is �w, where � is the computa-
tion-to-communication ratio of a processor defined in
Table 1. As a result, the computation and communication
processes are finished at the end of each interval simulta-
neously. The load distribution diagram of algorithm Q is
illustrated in Fig. 1. The initial processor is PN . In the first
time interval �1, PN processes ð1=� þ 1ÞN�2x=� units of
load and transmits ð1=� þ 1ÞN�2x units of load to PN�1

simultaneously. At the end of interval �1, PN�1 completely
receives ð1=� þ 1ÞN�2x units of load for processing. PN�1

splits the received load into two parts, ð1=� þ 1ÞN�3x=� and
ð1=� þ 1ÞN�3x, in interval �2. The former remains in PN�1

for processing and the latter is transmitted to processor
PN�2. Notice that the term ð1=� þ 1ÞN�2x, which is the
amount of load transmitted from the initial processor PN ,
comes from an elaborate calculation such that all processors
receive x units of load for computation at the last interval.
In general, in interval �N�jþ1, all processors Pk for k ¼ N to
j process ð1=� þ 1Þj�2x=� units of load and transmits ð1=� þ
1Þj�2x units of load to Pk�1 simultaneously.

We have to recalculate the parallel execution time and

the speed-up of algorithm Q because the computation and

communication start-up costs are to be included in the

analysis. Since the load fraction processed by Pj is LQj ¼
ð1=� þ 1Þj�1x for all 1 � j � N and the total load processed

by all processors is L (that is,
PN

j¼1 L
Q
j ¼ L), we obtain

x ¼ L=�

ð1=�þ1ÞN�1
. In algorithm Q, a processor is not able to

finish its computation and communication processes at the

end of an interval simultaneously when the computation

and communication start-up costs �cp and �cm are not the

same. This is opposite of the load balance rule because

either the computation or communication resource may be

idle for some time in each time interval. The duration of an

interval is the maximum of the computation time and

communication time in that interval. Specifically, we have

�j ¼ ð1þ 1=�Þj�1ðx=�ÞTcp þmaxf�cp; �cmg for j ¼ 1 to N � 1

and �N ¼ ð1þ 1=�ÞN�1ðx=�ÞTcp þ �cp since no communica-

tion start-up cost is involved in the last interval. Thus,

TQ;LN ¼ LQNTcp þ ðN � 1Þmaxf�cp; �cmg þ �cp, as shown in

Table 2. We give the following result without a proof

because the proof is straightforward:

Theorem 1. The speed-up of algorithm Q is SQ;LN ¼ ðLTcpþ�cpÞ
TQ;L
N

and

the asymptotic speed-up is SQN ¼ 1þ � when N and L tend to

infinity and L >> N .

4 THE PROPOSED ALGORITHMS

In this section, we first propose an improved algorithm

M by using the multi-installment processing technique

that will be compared with the original algorithm Q
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Fig. 1. Load distribution diagram of algorithm Q.

TABLE 2
Performance Summary



proposed in [21]. Both algorithms Q and M do not
consider start-up costs. Second, we consider the computa-
tion and communication start-up costs and propose an
improved algorithm S over algorithm Q. Third, we
combine algorithms M and S and develop the best
algorithm MS. We first summarize the performance
results in Table 2 to give an easy reference for readers
to understand the straightforward but tedious equation
derivations needed in the proposed algorithms.

4.1 Algorithm M with Multiple Installments

By carefully inspecting the load distribution in Fig. 1, it can
be seen that the waiting time for a processor to receive a
load fraction to compute is the main delay that limits the
performance of algorithm Q. This waiting time is propor-
tional to x. A larger x results in a longer waiting time for a
processor to receive a fraction of load to compute. Also, the
last processor P1 in the linear array only receives a fraction
of load for computation once. The longer P1 waits for a
fraction of load to compute, the longer is the total parallel
execution time. Therefore, we propose an improved
algorithm M that uses the multi-installment technique to
shrink x. By multiple installments, we mean that all of the
processors (including P1) receive a fraction of load multiple
times. The load distribution diagram of algorithm M is
shown in Fig. 2. The original interval �N is replaced with
m intervals called multi-installment intervals. The load
distribution in the first N � 1 intervals is exactly the same
as that in algorithm Q. Each multi-installment interval
except the last one (�N to �Nþm�2) is divided into
N � 1 subintervals. In each subinterval of �N , every
processor computes x=ðN � 1Þ units of load at the same
time. In the first subinterval of �N , PN transmits x�=ðN �
1Þ ¼ �x units of load to its successor ðPN�1Þ. In the second
subinterval of �N , PN and PN�1 transmit �x units of load to
their successors. Generally, in the kth subinterval of �N ,
processors Pi for i ¼ N to N � kþ 1 transmit �x units of
load to their successors. Other multi-installment intervals
�Nþ1 . . . �Nþm�2 are divided into N � 1 subintervals in the
same way as �N . In the last interval �Nþm�1, every processor
computes �m�1x units of load. It can be easily shown that
the load balance rule is fulfilled, that is, the computation
process and communication process finish simultaneously
at the end of each interval �Nþi for i ¼ 0 to m� 2.

We give a complete pseudocode of algorithm M in

Fig. 3. Since the load fraction processed by Pj is LMj ¼
ð 1=� þ 1ð Þj�1þ

Pm�1
i¼1 �iÞx for all 1 � j � N and the total

load processed by all processors is L (that is,
PN

j¼1 L
M
j ¼ L),

we have

x ¼ L=�

1þ 1=�ð ÞNþ N
�

Pm�1

i¼1

�i � 1

:

Consequently, the parallel execution time is TM;L
N;m ¼ TcpLMN ,

and TM;L
N;m is linearly proportional to L.

Theorem 2. The speed-up of algorithm M is SMN;m ¼
TcpL

TM
N;m

and

its asymptotic speed-up is 1) SMN;m ¼ � þ 1 if N ¼ 1,

2) SMN;m ¼ � þ 1 if m ¼ 1 and 0 < � < 1, or 3) SMN;m ¼ N
if m ¼ 1 and � � 1.

Proof. Refer to Table 2 for SMN;m. If N ¼ 1, ð1þ 1=�ÞN and

ð1þ1=�ÞN�1 are much larger than N
�

Pm�1
i¼1 �

i and
Pm�1

i¼1 �
i.
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Fig. 2. Load distribution diagram of algorithm M.

Fig. 3. Algorithm M.



Thus, SMN;m ¼ � þ 1. If m ¼ 1 and 0 < � < 1 ðN 6¼ 1Þ,
we have

Pm�1
i¼1 �i ¼ �

1�� ¼
�

N�1�� and, thus,

SMN;m ¼
ð1þ 1=�ÞN þ N

�
�

N�1�� � 1

1
� ð1=� þ 1ÞN�1 þ �

N�1��

� � ;
which can be simplified as SMN;m ¼ � þ 1. However, if

m ¼ 1 and � � 1,
Pm�1

i¼1 �i is much larger than ð1þ
1=�ÞN and ð1þ 1=�ÞN�1. Thus, SMN;m ¼ N . tu

Theorem 3. For algorithms Q and M without start-up costs,

TQN � TMN;m or SQN � SMN;m for N � 1.

Proof. We prove that

TQN � TMN;m
LTcm

¼ ð1þ 1=�ÞN�1

ð1þ 1=�ÞN � 1
�
ð1þ 1=�ÞN�1 þ

Pm�1

i¼1

�i

ð1þ 1=�ÞN � 1þ N
�

Pm�1

i¼1

�i
�0;

which can be simplified as fðN; �Þ � 0, where

fðN; �Þ ¼ N
� ð1=� þ 1ÞN�1 � ð1=� þ 1ÞN þ 1. By expand-

ing ð1þ 1=�ÞN�1 into 1þ
PN�1

i¼1
CN�1
i

�i and ð1þ 1=�ÞN into

1þ N
� þ

PN
i¼2

CN
i

�i , we obtain

fðN; �Þ ¼ N
�

XN�1

i¼1

CN�1
i

�i
�
XN

i¼2

CN
i

�i
¼
XN

i¼2
ði� 1ÞC

N
i

�i
:

Since ði� 1Þ C
N
i

�i � 0 for i ¼ 2 to N , we must have

fðN; �Þ � 0. Thus, the theorem follows. tu

4.2 Algorithm S with Start-Up Costs

To avoid either computation or communication resource
lying idle in a time interval, we propose an improved
algorithm S over algorithm Q to distribute the divisible load
in a linear array of processors with start-up costs.

Consider applying algorithm Q in the situation where
�cp > �cm. A processor must finish its communication
process before the computation process. Thus, as the load
balance rule states, we have to balance the time delays
between the computation and communication processes.
Let wcp and wcm be the loads assigned to processor PN for
processing and transmitting in a certain interval, respec-
tively. To make the processes of computing load wcp and
transmitting load wcm finish at the same time, we have
the equation wcpTcp þ �cp ¼ wcmTcm þ �cm, which yields
wcm ¼ �wcp þ ð�cp � �cmÞ=Tcm. Therefore, one way (called
addition method) to achieve the load balance between
computation and communication processes is to add an
additional amount of load � ¼ ð�cp � �cmÞ=Tcm to the
communication process as illustrated in the load distribu-
tion diagram in Fig. 4a. Specifically, we add an additional
load � to the communication process in all the intervals
except the final interval. Also, each processor gets an
extra computation load � in its final interval. Another
way, called the subtraction method, is to subtract the �
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Fig. 4. Algorithm S. (a) Load distribution diagram of algorithm S. (b) The pseudocode of algorithm S.



amount of load from the load assigned to the computa-

tion process. The parallel execution time of the subtrac-

tion method is the same as the addition method. The

reason is that the variable x is able to adapt to these two

methods. Consequently, both methods work when � is

negative, that is, �cp < �cm. We use the addition method

in this paper. We give a complete pseudocode of

algorithm S in Fig. 4b. Since the load processed by

processor Pj is LSj ¼ ð1þ 1=�Þj�1xþ� for all 1 � j � N
and

PN
j¼1 L

S
j ¼ L, we obtain

x ¼ L�N�

�ð1þ 1=�ÞN � �

and the parallel execution time TS;LN ¼ TcpLSN þN�cp (please

see Table 2). N is upper bounded by the inequality L � N�

because, otherwise, variable x becomes negative.

Theorem 4. The speed-up of algorithm S is SS;LN ¼ ðLTcpþ�cpÞ
TS;L
N

and

the asymptotic speed-up is SSN ¼ 1þ � when N and L tend to

infinity and L >> N .

Proof. The proof is straightforward. tu
Theorem 5. SS;LN � SQ;LN and SQ;LN ffi SS;LN if L >> N .

Proof. SS;LN � SQ;LN means that TS;LN � TQ;LN . Therefore, we

have to prove that

TcmðL�N�Þð1þ 1=�ÞN�1

ð1þ 1=�ÞN � 1
þ�Tcp þN�cp

� TcmLð1þ 1=�ÞN�1

ð1þ 1=�ÞN � 1
þ ðN � 1Þmaxf�cp; �cmg þ �cp:

Since N�cp must be smaller than or equal to

ðN � 1Þmaxf�cp; �cmg þ �cp, we only need to prove that

�� �N�
ð1þ 1=�ÞN�1

ð1þ 1=�ÞN � 1
� 0 or N

ð1þ 1=�ÞN�1

ð1þ 1=�ÞN � 1
� �:

By expanding ð1þ 1=�ÞN�1 and ð1þ 1=�ÞN , we have

N
ð1þ 1=�ÞN�1

ð1þ 1=�ÞN � 1
¼ �

PN�1
i¼0

NCN�1
i

�iPN
i¼1

CN
i

�i�1

;

which is larger than or equal to � because the
NCN�1

j

�j of

the numerator must be larger than or equal to
CN
jþ1

�j of the

denominator for j ¼ 0 to N � 1. Therefore, TS;LN � TQ;LN .

Similarly, if L >> N , TQ;LN ffi TS;LN . Thus, the theorem

follows. tu

4.3 Algorithm MS with Start-Up Costs and Multiple
Installments

In this section, we propose an algorithm MS that is better
than algorithm S by utilizing the multi-installment
technique as in algorithm M. The load distribution
diagram is illustrated in Fig. 5. The complete pseudocode
of algorithm MS is also given in Fig. 6. As in algorithm M,
the original interval �N in algorithm MS is replaced with
m multi-installment intervals, and each multi-installment
interval is divided into N � 1 subintervals. In general, in
the kth subinterval of �Nþj�1 for j ¼ 1 to m� 1, all pro-
cessors Pi for i ¼ N to N � kþ 1 compute hðj� 1Þ units of
load and transmit hðjÞ units of load to their successors,
where hðjÞ is defined in Table 1.

With hðiÞ ¼ �� hði� 1Þ þ�, it can be easily shown
that the load balance rule between the computation and
communication processes is satisfied. Since the load
processed by processor Pj is
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Fig. 5. Load distribution diagram of algorithm MS.

Fig. 6. Algorithm MS.



LMS
j ¼ xð1=� þ 1Þj�1 � xþ

Xm�1

i¼0

hðiÞ

¼ xð1=� þ 1Þj�1 þ x
Xm�1

k¼1

�k þ�
Xm�1

k¼0

Xk
i¼0

�i

for all 1 � j � N and
PN

j¼1 L
MS
j ¼ L, we have

x ¼
1
� L�N�

Pm�1

k¼0

Pk
i¼0

�i
� �

ð1þ 1=�ÞN þ N
�

Pm�1

k¼1

�k � 1

:

N is upper bounded by the equation L � N�
Pm�1

k¼0

Pk
i¼0 �

i

because, otherwise, variable x becomes negative. Also, the
parallel execution time to process L units of load is TMS;L

N;m ¼
TcpL

MS
N þ ðN � 1Þm�cp þ �cp (see Table 2). Notice that algo-

rithm S is the same as algorithm MS when the number of
installments m ¼ 1, and algorithm M is the same as
algorithm MS when � ¼ 0. We summarize our results in
the following theorems:

Theorem 6. The speed-up of algorithm MS is SMS;L
N;m ¼ LTcpþ�cp

TMS;L
N;m

,

and the asymptotic speed-up is SMS;L
N ¼ 1þ � when N and L

tend to infinity and L >> N .

Proof . When N tends to inf in i ty , we obta inPm�1
k¼0

Pk
i¼0 �

i ¼ m, N
�

Pm�1
k¼1 �

k � 1, a n d
Pm�1

k¼1 �
k � 0

since � ¼ �
N�1 . Thus, the theorem follows. tu

Theorem 7. SS;LN � SMS;L
N;m when L is constant and N tends to

infinity.

Proof. If N tends to infinity,
Pm�1

k¼0

Pk
i¼0 �

i � m,
N
�

Pm�1
k¼1 �

k � 1, and
Pm�1

k¼1 �
k � 0. Thus, we have TMS;L

N;m ffi
LTcp
1þ� þ mN

1þ� ð��cm þ �cpÞ: Since ��cm þ �cp � 0, the larger m

is, the longer TMS;L
N;m is. As a result, TMS;L

N;1 ¼ TS;LN is shorter

than TMS
N;m�2. Thus, the theorem follows. tu

Theorem 8. SMS;L
N;m � SS;LN if N is a constant and L tends to

infinity.

Proof. It is sufficient to prove that TS;LN � TMS;L
N;m � 0. Let

EQ ¼ TS;LN � TMS;L
N;m . Based on whether or not the terms

in EQ depend on L (refer to Table 2), EQ can be
simplified as

LTcmS ð1þ 1=�ÞN�1ðN � 1� �Þ=� þ 1
� �

þ gðN;Tcp; Tcm; �; �cp; �cmÞ;

where S ¼
Pm�1

k¼1 �
k and gðN;Tcp; Tcm; �; �cp; �cmÞ con-

tains all the terms in EQ that do not depend on L.
Since all the parameters N , Tcp, Tcm, �, �cp, and �cm are
constants, gðN;Tcp; Tcm; �; �cp; �cmÞ is a constant. As a
result, we only have to prove that ð1þ 1=�ÞN�1ðN � 1�
�Þ=� þ 1 > 0 because TcmS is positive and L can be very
large. The same proof has been given in Theorem 3.
Thus, the theorem follows. tu

4.4 Maximum Number of Installments or Processors

By setting d
dN T

Q;L
N ¼ 0, we are able to obtain the maximum

number of processors NQ
max such that, if the number of

processors exceeds Nmax, then the speed-up of algorithm Q

decreases. The detailed analysis to obtain NQ
max is given in

Appendix A. Since the number of processors is an integer
that must be larger than or equal to one, extra computations
are needed to determine if bNQ

maxc or dNQ
maxe produces the

best speed-up.

Subsequently, we only analyze algorithm MS since

algorithms M and S are its special cases. By setting
d
dm T

MS;L
N;m ¼ 0, we are able to obtain the number of

installments mmax such that, if the number of installments

exceeds mmax, then the speed-up decreases. We divide

algorithm MS into two cases: � ¼ 1 and � 6¼ 1. We present

the result for the case of � ¼ 1 here, whereas the result for

the case of � 6¼ 1 is given in Appendix B.
When � ¼ 1, we have the following parallel execution

time:

TMS;L
N;m ¼

Tcm L� Nmðmþ1Þ�
2

� �
1
� þ 1
� �N�1

þm� 1

� �
1
� þ 1
� �N

�1þ Nðm�1Þ
�

þ Tcpmðmþ 1Þ�
2

þmðN � 1Þ�cp þ �cp:

TMS;L
N;m can be simplified as Am2þBmþC

N
�mþ 1

�þ1ð ÞN�1�N�
, where

C ¼ TcmL
1

�
þ 1

� �N�1

�1

 !
;

A ¼ Tcm
�N þ Tcp þ 1

2
�

� �
1

�
þ 1

� �N�1

�Tcp�
2
þNðN � 1Þ�cp

�
;

and

B ¼ TcmLþ
�TcmN þ Tcp þ Tcm

2
�þ ðN � 1Þ�cp

1

�
þ 1

� �� �
1

�
þ 1

� �N�1

�Tcp�
2
� ðN � 1Þ�cp �

NðN � 1Þ�cp
�

:

To obtain mmax, we perform
dTMS;L

N;m

dm ¼ 0, which leads to

AN

�
m2 þ 2Am

1

�
þ 1

� �N
�1�N

�

 !

þB 1

�
þ 1

� �N
�1�N

�

 !
� CN

�
¼ 0:

As a result, obtaining mmax for a minimum TMS;L
N;m becomes

solving the above quadratic equation in one variable. Since
the number of installments is an integer and must be
larger than or equal to one, extra computations must be
performed to determine if bmmaxc or dmmaxe produces the
best speed-up.

5 EXTENSION TO k-DIMENSIONAL MESHES

To extend the results for linear arrays to k-dimensional

meshes, a k-dimensional mesh Meshk of size N ¼ N1 �N2 �
. . .�Nk is treated as a linear array Mesh1 of Nk nodes,

where each node Pj, 1 � j � Nk, is a ðk� 1Þ-dimensional

submesh Meshk�1 of size N1 �N2 � . . .�Nk�1. Notice that

Pj is not a single processor when k > 1. We denote the
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algorithm A operated on a k-dimensional mesh Meshk by

Ak. In Ak, the computation time taken by a node to

process L units of load is the time (that is, TA;LN1�			�Nk�1
)

taken for processing load L in a ðk� 1Þ-dimensional

submesh Meshk�1 using algorithm A, which may not be

the same as L� TA;1N1�			�Nk�1
, where TA;1N1�			�Nk�1

is the time

taken for processing a unit of load in a ðk� 1Þ-dimensional

submesh. In other words, TA;LN1�			�Nk�1
may not be linearly

proportional to L. Depending on if TA;LN1�			�Nk�1
is linearly

proportional to L, we divide the algorithms developed in

this paper into two categories based on whether or not the

computation and communication start-up costs are in-

cluded in the analysis.

5.1 Algorithms without Start-Up Costs

Both Mk and Qk belong to this category. We only

consider algorithm Mk because Qk has been analyzed in

[21]. The analysis in Section 4.1 shows that the parallel

execution time of a linear array (that is, a one-dimen-

sional mesh) using algorithm M is linearly proportional

to L. Thus, the time denoted by Tcp;2 to compute a unit of

load on a linear array of N1 processors is simply TM;1
N1

. In

general, the time to compute a unit of load on a

k-dimensional mesh Meshk (denoted by Tcp;kþ1) is simply

TM;1
N1�			�Nk

. Therefore, the parallel execution time and the

speed-up of algorithm M running on a k-dimensional

mesh Meshk of size N ¼ N1 �N2 � . . .�Nk to process

L units of load can be expressed recursively as follows:

TM;L
N1�			�Nk

¼ LTcp;kþ1 and SM;L
N1�			�Nk

¼ LTcp

TM;L
N1�			�Nk

¼ Tcp
Tcp;kþ1

, where

�k ¼ Tcp;k
Tcm

, �k ¼ �k
Nk�1 , and

Tcp;kþ1 ¼
Tcm 1þ 1

�k

� �Nk�1
þ
Pmk�1

i¼1

ð�kÞi
� �

1þ 1
�k

� �Nk

þNk

�k

Pmk�1

i¼1

ð�kÞi � 1

for k � 1, and mk is the number of installment intervals in
the kth dimension. The base conditions are Tcp;1 ¼ Tcp and
�cp;1 ¼ �cp and, thus, �1 ¼ �.

Lemma 1. The asymptotic�kþ1 value of algorithmM running on a

k-dimensional mesh Meshk of size N ¼ N1 �N2 � . . .�Nk

is 1) �
k�þ1 if Ni ¼ 1 for all i ¼ 1 to k, 2) �

k�þ1 if mi ¼ 1 and

0 < �i < 1 for all i ¼ 1 to k, or 3) �
N1�			�Nk

if mi ¼ 1 and

�i � 1 for all i ¼ 1 to k.

Proof. The lemma is a direct extension of Theorem 2. We

prove the lemma by induction. We prove case 1 only since

cases 2 and 3 can be proved by the same induction

analysis. The base condition is �1 ¼ �. Assume that

�k ¼ �
ðk�1Þ�þ1 , and Ni ¼ 1 for all i ¼ 1 to k� 1. Since

Nk ¼ 1, ð1þ 1=�kÞNk and ð1þ 1=�kÞNk�1 are much larger

than Nk

�k

Pmk�1
i¼1 �ik and

Pmk�1
i¼1 �ik, respectively. Thus,

�kþ1 ¼ �k
1þ�k ¼

�
k�þ1 . tu

Theorem 9. The asymptotic speed-up of algorithm M running on

a k-dimensional mesh Meshk of size N ¼ N1 �N2 � . . .�
Nk is 1) SMN1�			�Nk

¼ k� þ 1 if Ni ¼ 1 for i ¼ 1 to k,

2) SMN1�			�Nk
¼ k� þ 1 if mi ¼ 1 and 0 < �i � 1 for i ¼ 1 to

k, or 3) SMN1�			�Nk
¼ N1 � 	 	 	 �Nk if mi ¼ 1 and �i > 1 for

i ¼ 1 to k.

Proof. The proof can be shown directly from Lemma 1. tu
Theorem 10. For algorithms Q and M without start-up costs,

we have TQ;LN1�			�Nk
� TM;L

N1�			�Nk
or SQ;LN1�			�Nk

� SM;L
N1�			�Nk

if

Ni � 1 for i ¼ 1 to k.

Proof. We can prove the theorem by induction and by using
the same analysis as in Theorem 3. tu

5.2 Algorithms with Start-Up Costs

Consider algorithmsQ, S, orMS running on a k-dimensional
mesh Meshk that is treated as a linear array Mesh1 of
Nk nodes. If the computation and communication start-up
costs are considered, the parallel execution time of proces-
sing L units of load in each node is not linearly proportional
to L. In other words, the computation-to-communication
ratio of each node in the linear array Mesh1 is not
TA;1N1�			�Nk�1

, where A is Q, S, or MS.

Based on the results shown in Table 2, the parallel
execution time of a linear array of N1 processors is

TS;LN1
¼ Tcm L�N�ð Þð1þ 1=�ÞN1�1

ð1þ 1=�ÞN1 � 1
þ�Tcp þN1�cp

for algorithm S. By a simple term rearrangement, we have
TS;LN1

¼ LTcp;2 þ �cp;2, where

�cp;2 ¼ �Tcp þN1�cp �
N1�Tcmð1þ 1=�ÞN1�1

ð1þ 1=�ÞN1 � 1

and

Tcp;2 ¼
Tcmð1þ 1=�ÞN1�1

ð1þ 1=�ÞN1 � 1
:

TS;LN1
¼ LTcp;2 þ �cp;2 can be interpreted as “the time to

compute a unit of load and the computation start-up

cost on a linear array of N1 processors are Tcp;2 and

�cp;2, respectively.” Consequently, the parallel execution

time of algorithm S running on a k-dimensional mesh

Meshk of size N ¼ N1 �N2 � . . .�Nk to process L units

of load can be expressed recursively as follows:

TS;LN1�			�Nk
¼ LTcp;kþ1 þ �cp;kþ1, where �k ¼ Tcp;k

Tcm
,

Tcp;kþ1 ¼
Tcmð1þ 1=�kÞNk�1

ð1þ 1=�kÞNk � 1
; �k ¼

ð�cp;k � �cmÞ
Tcm

;

and

�cp;kþ1 ¼ Nk�cp;k þ�kTcp;k �
Nk�kTcmð1þ 1=�kÞNk�1

ð1þ 1=�kÞNk � 1
:

The base conditions are Tcp;1 ¼ Tcp and �cp;1 ¼ �cp. Therefore,
the speed-up of algorithm S running on a k-dimensional
mesh Meshk of size N ¼ N1 �N2 � . . .�Nk to process
L units of load is

SS;LN1�			�Nk
¼ LTcp þ �cp
TS;LN1�			�Nk

:
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Similarly, we can derive Tcp;kþ1 and �cp;kþ1 for algorithms
Q and MS. We summarize the results in Table 3.
Therefore, the parallel execution time and the speed-up
of algorithms Q, S, and MS running on a k-dimensional
mesh Meshk of size N ¼ N1 �N2 � . . .�Nk to process
L units of load can be expressed recursively based on the
results shown in Table 2 and Table 3. Notice that, for
algorithms M and MS, �k ¼ �k

Nk�1 .

Lemma 2. The asymptotic �kþ1 value of algorithm Q or S
running on a k-dimensional mesh Meshk of size N ¼
N1 �N2 � . . .�Nk is �kþ1 ¼ �

k�þ1 .

Proof. The proof is the same as that in Lemma 1. tu
Theorem 11. The asymptotic speed-up of algorithm Q or S

running on a k-dimensional mesh Meshk of size N ¼
N1 � . . .�Nk is SMS

N1�			�Nk
¼ k� þ 1 if Ni is very large for

all i ¼ 1 to k and L >> Nk.

Proof. The proof can be shown directly from Lemma 2. tu
Lemma 3. The asymptotic�kþ1 value of algorithmMS running on

a k-dimensional meshMeshk of sizeN ¼ N1 �N2 � . . .�Nk

is 1) �
k�þ1 if Ni ¼ 1 for all i ¼ 1 to k, 2) �

k�þ1 if mi ¼ 1 and

0 < �i < 1 for all i ¼ 1 to k, or 3) �
N1�			�Nk

if mi ¼ 1 and

�i � 1 for all i ¼ 1 to k.

Proof. The proof is the same as that in Lemma 1. tu
Theorem 12. The asymptotic speed-up of algorithm MS running

on a k-dimensional mesh Meshk of size N ¼ N1 �N2 �
. . .�Nk is 1) SMS

N1�			�Nk
¼ k� þ 1 if Ni ¼ 1 for all i ¼ 1 to

k, 2) SMS
N1�			�Nk

¼ k� þ 1 if mi ¼ 1 and 0 < �i � 1 for all
i ¼ 1 to k, or 3) SMS

N1�			�Nk
¼ N1 � 	 	 	 �Nk if mi ¼ 1 and

�i > 1 for all i ¼ 1 to k.

Proof. The proof can be shown directly from Lemma 3. tu
Theorem 13. SS;LN1�			�Nk

� SQ;LN1�			�Nk
and SS;LN1�			�Nk

ffi SQ;LN1�			�Nk

if L >> Ni for all i ¼ 1 to k.

Proof. The proof is the same as that in Theorem 5. tu
Theorem 14. SS;LN1�			�Nk

� SMS;L
N1�			�Nk

when L is a constant and

Ni tends to infinity for all i ¼ 1 to k.

Proof. The proof is the same as that in Theorem 7. tu
Theorem 15. SMS;L

N1�			�Nk
� SS;LN1�			�Nk

when Ni is a constant for

all i ¼ 1 to k and L tends to infinity.

Proof. The proof is the same as that in Theorem 8. tu

6 DISCUSSIONS OF THE RESULTS

In Fig. 7, we illustrate the numerical results for the speed-ups
of algorithms Q and M without start-up costs (that is,
�cp ¼ �cm ¼ 0). We assume that � ¼ 100 and the number of
installments for algorithmM ism ¼ 5. Both algorithmsQ and
M approach their maximal speed-ups of� þ 1 whenN is very
large. However, the speed-up of algorithmM approaches� þ
1 more quickly than algorithm Q. For example, when the
number of processors in the linear array isN ¼ 200, the speed-
up of algorithm M reaches 100.2, which is very close to the
asymptotic speed-up, whereas the speed-up of algorithm Q
only reaches 87.2. When N ¼ 500, algorithm M reaches the
maximal speed-up 101, whereas the speed-up of algorithmQ
is 100.3. We also calculate the results for Tcp ¼ Tcm, that is,
� ¼ 1. In this case, both algorithms Q and M reach the
maximal speed-up ð1þ � ¼ 2Þ very quickly because ð1þ
1=�ÞN and ð1þ 1=�ÞN�1 dominate the other terms in the
speed-up equations.

Next, we show the numerical results for the speed-ups of
algorithms Q, S, and MS with two sets of start-up costs.
Fig. 8a shows the results for �cm ¼ 1 and �cp ¼ 2. Algorithm S
performs consistently better than algorithm Q. With NQ

Max ¼
395:65 from Section 4.4 and speed-up calculations for N ¼
395 and 396, we find that the best speed-up of algorithm Q is
91.84 when N ¼ 396. The speed-up of algorithm S ap-
proaches 91.84 when N ¼ 285. The best speed-up of algo-
rithm S is 94.66 when N ¼ 459. When N is large, algorithm
MS does not perform better than algorithmQorS, which is in
agreement with Theorem 7. However, algorithm MS per-
forms better than algorithmQ or S whenN is small. The best
speed-up of algorithm MS is 89.82 when N ¼ 177. Fig. 8b
shows the results for large start-up costs, �cm ¼ 100 and
�cp ¼ 100. Fig. 8b has a similar performance trend to Fig. 8a in
that, whenN is small ðN < 100Þ, algorithmMS performs the
best, and whenN is large ðN > 100Þ, algorithmMS performs
the worst. Also, the speed-ups of algorithms Q and S are
almost the same because the start-up costs are large.

Finally, we illustrate the numerical results for the speed-
ups of algorithms Q, S, and MS on 2D and 3D meshes. We
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TABLE 3

The Computation-to-Communication Ratio ð�Akþ1Þ and

Computation Start-Up Cost ð�Akþ1Þ of a k-Dimensional

Mesh of Size N1 �N2 � . . .�Nk Processors, where

A is Q, M, S, or MS, �k ¼ �k
Nk�1 , �A

k ¼
�Ak ��cm
Tcm

, and

the Base Conditions Are �A1 ¼ � and �A1 ¼ �cp

Fig. 7. Speed-up of algorithms Q and M, where L ¼ 10; 000, Tcm ¼ 1,

Tcp ¼ � ¼ 100, and m ¼ 5.



set L ¼ 200; 000, Tcm ¼ 1, and Tcp ¼ � ¼ 100. In Fig. 9a, m1

is set to 2 and m2 is set to the optimal numbers of
installments (that is, mmax), which are 8, 25, 11, 7, 5, 2, 2, 2,
2, and 2 for algorithm MS on 2D meshes of 5 � 10, 5 � 20, 5
� 30, 5 � 40, 5 � 50, 5 � 60, 5 � 70, 5 � 80, 5 � 90, and 5 �
100 processors, respectively. When the mesh is smaller than
or equal to 5 � 50 processors, the speed-ups of algorithms
Q and S are almost the same, and algorithm MS performs
the best. As in the linear array, when the number of
processors in the mesh increases, algorithm MS does not
perform better than algorithm Q or S. Algorithm S always
perform better than algorithm Q. The speed-ups for
3D meshes of various sizes with m1 ¼ m2 ¼ m3 ¼ 2 are
shown in Fig. 9b. As in 2D meshes, algorithm MS performs
best when the mesh is small and algorithm S performs best
when the mesh is large.

7 CONCLUSION

We have proposed a set of algorithms, M, S, and MS,
which employ the multi-installment processing technique
and computation and communication start-up costs to
distribute divisible load on linear arrays. The extension to
multidimensional meshes is also presented. We derived
the closed-form solutions for the parallel execution times
and speed-ups of the proposed algorithms. When the
computation and communication start-up costs are not
considered, the proposed algorithm M performs better
than algorithm Q [21] in all cases. When the computation
and communication start-up costs are considered, the
proposed algorithm S performs better than algorithm Q

[21] in all cases and the proposed algorithm MS performs

better than algorithm S and Q when the number of

processors is small or when the total load is very large.

APPENDIX A
The maximum number of processors NQ

max such that, if the

number of processors exceeds NQ
max, then the speed-up of

algorithm Q decreases, is obtained by differentiating TQ;LN

with respect to N as

d

dN
TQ;LN ¼ �LTcmð1þ 1=�ÞN

Q
max�1 lnð1þ 1=�Þ

ð1þ 1=�ÞN
Q
max � 1

� �2

þmax �cp; �cm
� �

¼ 0:

This equation can be simplified by setting a new constant

u ¼ ð1þ 1=�Þ and a new variable x ¼ uNQ
max as follows:

x2 � ð LTcm ln u
umaxf�cp;�cmg þ 2Þxþ 1 ¼ 0. As a result, NQ

max can be

obtained by solving the quadratic equation of x.

APPENDIX B
For the case of � 6¼ 1 in algorithm MS, the number of

installments mmax such that, if the number of installments

exceeds mmax, then the speed-up decreases, is obtained by

differentiating TMS;L
N;m with respect to m as

dTMS;L
N;m

dm
¼ Tcp

dLMS
N

dm
þ ðN � 1Þ�cp ¼ 0:
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Fig. 8. Speed-up of algorithms Q, S, and MS. L ¼ 10; 000, Tcm ¼ 1, Tcp ¼ � ¼ 100, and m ¼ 5. (a) �cp ¼ 2 and �cm ¼ 1. (b) �cp ¼ 100 and �cm ¼ 100.

Fig. 9. Speed-ups of algorithms Q, S, and MS, where L ¼ 200; 000, Tcm ¼ 1, Tcp ¼ � ¼ 100, �cp ¼ 2, and �cm ¼ 1. (a) Two-dimensional meshes.

(b) Three-dimensional meshes.



Through a simple but tedious derivation process, we obtain
dTMS;L

N;m

dm ¼ 0 ¼ D�2m þ Em�m þ F�m þG, where constants D,

E, F , and G are complex and are shown below. This

nonlinear exponential equation can be solved simply by the

Newton numerical method to obtain mmax.
From Section 4.3, we have

LMS
N

¼
1=� L� N�

��1
�mþ1��
��1 �m

� �� �
1þ 1=�ð ÞN�1þ �

��1 ð�m�1 � 1Þ
� �

ð1þ 1=�ÞN þ N�
�ð��1Þ ð�m�1 � 1Þ � 1

þ �

�� 1

�mþ1 � �
�� 1

�m
� �

¼
1
� Lþ N��

ð��1Þ2 �
N�
ð��1Þ2 �

mþ1þN�
��1m

� �
1
��1 �

mþð1þ1=�ÞN�1� �
��1

� �
N�m

�ð��1Þ þ 1þ 1 1
�

� �N
� N�

�ð��1Þ � 1

þ �

�� 1

�mþ1

�� 1
�m

� �
� ��

ð�� 1Þ2

¼
�m �

��1 ð1þ 1
�Þ
N�1þ L

�ð��1Þ �
��

ð��1Þ2
� �

þm �
ð��1Þ � ð1þ 1

�Þ
N�1

� �
N�m

�ð��1Þ þ C0

þ C2C3=� � C0C1

N�m

�ð��1Þ þ C0

¼ A�
m þBmþ C2C3=� � C0C1

N�m

� ��1ð Þ þ C0

;

where

A ¼ �

�� 1
1þ 1

�

� �N�1

þ L

�ð�� 1Þ �
��

ð�� 1Þ2
;

B ¼ �

ð�� 1Þ � 1þ 1

�

� �N�1

; C0 ¼ 1þ 1
1

�

� �N
� N�

�ð�� 1Þ � 1;

C1 ¼
��

ð�� 1Þ2
; C2 ¼ Lþ

N��

ð�� 1Þ2
; and

C3 ¼ ð1þ 1=�ÞN�1 � �

�� 1
:

Because
dTMS

N

dm ¼ Tcp
dLMS

N

dm þ ðN � 1Þ�cp ¼ 0, we have

0 ¼ Tcp
�
m�m

Bðln �ÞN
�ð�� 1Þ

� �
þ �m

�
�ðln �ÞNðC2C3=� � C0C1Þ

�ð�� 1Þ

þ BN

�ð�� 1Þ þAðln �ÞC0

�
þBC0

�

þ ðN � 1Þ�cpN2�2m

�2ð�� 1Þ2
þ 2C0

ðN � 1Þ�cpN�m
�ð�� 1Þ þ ðN � 1Þ�cpC2

0

¼ �2m ðN � 1Þ�cpN2

�2ð�� 1Þ2
þm�m Bðln �ÞNTcp

�ð�� 1Þ

� �
þBC0Tcp

þ ðN � 1Þ�cpC2
0 þ �m

�
�Tcpðln �ÞNðC2C3=� � C0C1Þ

�ð�� 1Þ

þ TcpBN

�ð�� 1Þ þ TcpAðln �ÞC0 þ 2C0
ðN � 1Þ�cpN
�ð�� 1Þ

�
¼ D�2m þ Em�m þ F�m þG;

where

D ¼ ðN � 1Þ�cpN2

�2ð�� 1Þ2
; E ¼ Bðln �ÞNTcp

�ð�� 1Þ ;

G ¼ BC0Tcp þ ðN � 1Þ�cpC2
0 ; and

F ¼ �Tcpðln �ÞNðC2C3=� � C0C1Þ
�ð�� 1Þ þ TcpBN

�ð�� 1Þ

þ TcpAðln �ÞC0 þ 2C0
ðN � 1Þ�cpN
�ð�� 1Þ :

REFERENCES

[1] D. Altilar and Y. Paker, “Optimal Scheduling Algorithms for
Communication Constrained Parallel Processing,” Proc. Eighth
Int’l Euro-Par Conf. (Euro-Par ’02), pp. 197-206, 2002.

[2] V. Bharadwaj and H.M. Wong, “Scheduling Divisible Loads on
Heterogeneous Linear Daisy Chain Networks with Arbitrary
Processor Release Times,” IEEE Trans. Parallel and Distributed
Systems, vol. 15, no. 3, pp. 273-288, Mar. 2004.

[3] V. Bharadwaj, D. Ghose, and V. Mani, “Multi-Installment Load
Distribution in Tree Networks with Delays,” IEEE Trans. Aerospace
and Electronic Systems, vol. 31, no. 2, pp. 555-567, 1995.

[4] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi, Scheduling
Divisible Loads in Parallel and Distributed Systems. IEEE CS Press,
1996.

[5] V. Bharadwaj, D. Ghose, and T. Robertazzi, “Divisible Load
Theory: A New Paradigm for Load Scheduling in Distributed
Systems,” Cluster Computing, vol. 6, no. 1, pp. 7-17, 2003.

[6] V. Bharadwaj and H.M. Wong, “Scheduling Divisible Loads on
Heterogeneous Linear Daisy Chain Networks with Arbitrary
Processor Release Times,” IEEE Trans. Parallel and Distributed
Systems, vol. 15, no. 3, 273-288, Mar. 2004.

[7] J. Blazewicz, M. Drozdowski, and M. Markiewicz, “Divisible
Task Scheduling—Concept and Verification,” Parallel Computing,
vol. 25, pp. 87-98, 1999.

[8] J. Blazewicz, M. Drozdowski, F. Guinand, and D. Trystram,
“Scheduling a Divisible Task in a 2-Dimensional Mesh,” Discrete
Applied Math., vol. 94, nos. 1-3, pp. 35-50, 1999.

[9] S. Chan, V. Bharadwaj, and D. Ghose, “Large Matrix-Vector
Products on Distributed Bus Networks with Communication
Delays Using the Divisible Load Paradigm: Performance and
Simulation,” Math. and Computers in Simulation, vol. 58, pp. 71-92,
2001.

[10] S. Charcranoon, T.G. Robertazzi, and S. Luryi, “Parallel Processor
Configuration Design with Processing/Transmission Costs,” IEEE
Trans. Computers, vol. 49, no. 9, pp. 987-991, Sept. 2000.

[11] Y.C. Cheng and T.G. Robertazzi, “Distributed Computation with
Communication Delays,” IEEE Trans. Aerospace and Electronic
Systems, vol. 24, no. 6, pp. 700-712, Nov. 1988.

[12] M. Drozdowski, Selected Problems of Scheduling Tasks in Multi-
processor Computing Systems. Poznan Univ. of Technology Press,
1997.

[13] M. Drozdowski and W. Glazek, “Scheduling Divisible Loads in a
Three-Dimensional Mesh of Processors,” Parallel Computing,
vol. 25, no. 4, pp. 381-404, 1999.

[14] M. Drozdowski and P. Wolniewicz, “Out-of-Core Divisible Load
Processing,” IEEE Trans. Parallel and Distributed Systems, vol. 14,
no. 10, pp. 1048-1056, Oct. 2003.

[15] M. Drozdowski and P. Wolniewicz, “Performance Limits of
Divisible Load Processing in Systems with Limited Communica-
tion Buffers,” J. Parallel and Distributed Computing, vol. 64, no. 8,
pp. 960-973, 2004.

[16] D. Ghose and H.J. Kim, “Computing BLAS Level-2 Operations on
Workstation Clusters Using the Divisible Load Paradigm,” Math.
and Computer Modelling, vol. 41, no. 1, pp. 49-70, Jan. 2005.

[17] W. Glazek, “Distributed Computation in a Three-Dimensional
Mesh with Communication Delays,” Proc. Sixth Euromicro Work-
shop Parallel and Distributed Processing, pp. 38-42, Jan. 1998.

[18] J. Guo, J. Yao, and L.N. Bhuyan, “An Efficient Packet Scheduling
Algorithm in Network Processors,” Proc. INFOCOM, Mar. 2005.

1628 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007



[19] C. Lee and M. Hamdi, “Parallel Image Processing Applications on
a Network of Workstations,” Parallel Computing, vol. 21, pp. 137-
160, 1995.

[20] K. Li, “Managing Divisible Load on Partitionable Networks,” High
Performance Computing Systems and Applications, J. Schaeffer, ed.,
pp. 217-228, Kluwer Academic Publishers, 1998.

[21] K. Li, “Improved Methods for Divisible Load Distribution on
k-Dimensional Meshes Using Pipelined Communications,” IEEE
Trans. Parallel and Distributed Systems, vol. 14, no. 12, pp. 1250-
1261, Dec. 2003.

[22] K. Li, “Accelerating Divisible Load Distribution on Tree and
Pyramid Networks Using Pipelined Communications,” Proc. 18th
Int’l Parallel and Distributed Processing Symp. (IPDPS ’04), p. 228,
Apr. 2004.

[23] X. Li, B. Veeravalli, and C.C. Ko, “Divisible Load Scheduling on a
Hypercube Cluster with Finite-Size Buffers and Granularity
Constraints,” Proc. First IEEE/ACM Int’l Symp. Cluster Computing
and the Grid (CCGrid ’01), pp. 660-667, May 2001.

[24] X. Li, V. Bharadwaj, and C.C. Ko, “Distributed Image Processing
on a Network of Workstations,” Int’l J. Computers and Applications,
vol. 25, no. 2, pp. 1-10, 2003.

[25] T.G. Robertazzi, “Ten Reasons to Use Divisible Load Theory,”
Computer, pp. 63-68, May 2003.

[26] B. Veeravalli, X. Li, and C.C. Ko, “On the Influence of Start-Up
Costs in Scheduling Divisible Loads on Bus Networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 11, no. 12, pp. 1288-
1305, Dec. 2000.

[27] R. Wang, A. Krishnamurthy, R. Martin, T. Anderson, and D.
Culler, “Modeling Communication Pipeline Latency,” Proc. Joint
Int’l Conf. Measurement and Modeling of Computer Systems (SIG-
METRICS ’98/PERFORMANCE ’98), pp. 22-32, 1998.

[28] Y. Yang, K.V.D. Raadt, and H. Casanova, “Multiround Algorithms
for Scheduling Divisible Loads,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 16, no. 11, pp. 1092-1102, Nov. 2005.

Yeim-Kuan Chang received the MS degree in
computer science from the University of Hous-
ton, Clear Lake, in 1990 and the PhD degree in
computer science from Texas A&M University
in 1995. He is currently an assistant professor
in the Department of Computer Science and
Information Engineering, National Cheng Kung
University, Taiwan, ROC. His research inter-
ests include computer architecture, multipro-
cessor systems, Internet router design, and

computer networking.

Jia-Hwa Wu received the BS degree in me-
chanical engineering from Feng Chia University,
Taiwan, in 1981 and the MBA degree in
industrial management from the National Cheng
Kung University, Taiwan, in 1986. He is currently
a doctoral candidate in the Department of
Computer Science and Information Engineering,
National Cheng Kung University, Taiwan, ROC.
His research interests include parallel compilers,
data mining, and Internet computing.

Chi-Yeh Chen received the BS degree in
communication engineering from Da-Yeh Uni-
versity, Changhua, Taiwan, ROC, in 2001 and the
MS degree in computer science and information
and engineering from the National Cheng Kung
University, Tainan, Taiwan, ROC, in 2005. He is
currently an engineer in the Plasma and Space
Science Center, National Cheng Kung University,
Tainan, Taiwan, ROC. His research interests
include parallel algorithm and load distribution.

Chih-Ping Chu received the BS degree in
agricultural chemistry from the National Chung
Hsing University, Taiwan, the MS degree in
computer science from the University of Califor-
nia, Riverside, and the PhD degree in computer
science from Louisiana State University. He is
currently a professor in the Department of
Computer Science and Information Engineering,
National Cheng Kung University, Taiwan, ROC.
His research interests include parallelizing com-

pilers, parallel computing, parallel processing, Internet computing, DNA
computing, and software engineering.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHANG ET AL.: IMPROVED METHODS FOR DIVISIBLE LOAD DISTRIBUTION ON K-DIMENSIONAL MESHES USING MULTI-INSTALLMENT 1629



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


